243,656 research outputs found

    Characterization of Transepithelial Potential Oscillations in the \u3cem\u3eDrosophila\u3c/em\u3e Malpighian Tubule

    Get PDF
    The Malpighian tubule of Drosophila melanogaster is a useful model system for studying the regulation of epithelial ion transport. In acutely isolated tubules, the transepithelial potential (TEP) undergoes large oscillations in amplitude with a period of approximately 30s. The TEP oscillations are diminished by reductions in the peritubular chloride concentration in a manner consistent with their being caused by fluctuations in chloride conductance. The oscillations are eliminated by pretreating tubules with the calcium chelator BAPTA-AM, although removal of peritubular calcium has no effect, suggesting that the oscillations are a result of either the release of calcium from intracellular stores or the entry of calcium from the tubule lumen. Transcripts encoding two calcium-release channels, the ryanodine receptor and the inositol trisphosphate receptor, are detectable in the tubule by reverse transcription–polymerase chain reaction. To identify the cell type responsible for the oscillations, tubules were treated with diuretic hormones known to alter calcium levels in each of the two cell types. Leucokinin-IV, which increases calcium levels in the stellate cells, suppressed the oscillations, whereas cardioacceleratory peptide 2b (CAP2b), which increases calcium levels in the principal cells, had no effect. These data are consistent with a model in which rhythmic changes in transepithelial chloride conductance, regulated by intracellular calcium levels in the stellate cells, cause the TEP oscillations

    Processing of signals from an ion-elective electrode array by a neural network

    Get PDF
    Neural network software is described for processing the signals of arrays of ion-selective electrodes. The performance of the software was tested in the simultaneous determination of calcium and copper(II) ions in binary mixtures of copper(II) nitrate and calcium chloride and the simultaneous determination of potassium, calcium, nitrate and chloride in mixtures of potassium and calcium chlorides and ammonium nitrate. The measurements for the Ca2+/Cu2+ determinations were done with a pH-glass electrode and calcium and copper ion-selective electrodes; results were accurate to ±8%. For the K+/Ca2+NO−3/Cl− determinations, the measurements were made with the relevant ion-selective electrodes and a glass electrode; the mean relative error was ±6%, and for the worst cases the error did not exceed 20%

    Evaluation of Deicer Impacts on Pervious Concrete Specimens (Phase II)

    Get PDF
    This research examined the chemical degradation of pervious concrete due to calcium chloride or magnesium chloride deicers. The project consisted of Phase I, Phase IIa, and Phase IIb. Phase I was previous work where a testing protocol was developed to mimic deicer applications. Phases IIa and IIb are parts of this project. Phase IIa used split tensile testing on Phase I specimens and further evaluated the chemical data from Phase I magnesium chloride applications. Phase IIb repeated the Phase I protocol for a larger number of new ordinary Portland cement specimens and evaluated the impact on strength using the unconfined compressive strength test. The hypotheses were based on complexation and precipitation chemistry. Specimens subjected to calcium chloride showed visible degradation. Specimens exposed to magnesium chloride deicer showed a large increase in loss of calcium ions in Phase I. Both deicers showed a loss in strength compared with a water control in Phase IIb. Results from the split tensile testing were inconclusive. The protocol from Phase I with the unconfined compression test may be an effective testing procedure to determine if different designs might be more resistant to chemical degradation by these two deicing chemicals

    High-temperature ''hydrostatic'' extrusion

    Get PDF
    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion

    A biogenic amine and a neuropeptide act identically: tyramine signals through calcium in drosophila tubule stellate cells

    Get PDF
    Insect osmoregulation is subject to highly sophisticated endocrine control. In Drosophila, both Drosophila kinin and tyramine act on the Malpighian (renal) tubule stellate cell to activate chloride shunt conductance, and so increase the fluid production rate. Drosophila kinin is known to act through intracellular calcium, but the mode of action of tyramine is not known. Here, we used a transgenically encoded GFP::apoaequorin translational fusion, targeted to either principal or stellate cells under GAL4/UAS control, to demonstrate that tyramine indeed acts to raise calcium in stellate, but not principal cells. Furthermore, the EC(50) tyramine concentration for half-maximal activation of the intracellular calcium signal is the same as that calculated from previously published data on tyramine-induced increase in chloride flux. In addition, tyramine signalling to calcium is markedly reduced in mutants of NorpA (a phospholipase C) and itpr, the inositol trisphosphate receptor gene, which we have previously shown to be necessary for Drosophila kinin signalling. Therefore, tyramine and Drosophila kinin signals converge on phospholipase C, and thence on intracellular calcium; and both act to increase chloride shunt conductance by signalling through itpr. To test this model, we co-applied tyramine and Drosophila kinin, and showed that the calcium signals were neither additive nor synergistic. The two signalling pathways thus represent parallel, independent mechanisms for distinct tissues (nervous and epithelial) to control the same aspect of renal function

    Response of African Yam Bean to Charcoal and Calcium Chloride Treatment in a Crude Oil Polluted Soil

    Get PDF
    The Response of African Yam Bean to charcoal and calcium chloride treatment in a crude oil polluted soil was carried out. 10kg of soil was polluted with 600ml of crude oil and was remediated with 500g of charcoal; the germinated seeds were pre-treated with 25g/l of Calcium chloride for 15mins before it was sown. The different treatments were: Control, 6% pollution, 6% pollution and charcoal, Charcoal only, Pre-treatment with calcium chloride, Pre-treatment with calcium chloride and 6% pollution, Pre-treatment with calcium chloride and 6% pollution and charcoal, Pre-treatment with calcium chloride and charcoal. Results showed that crude oil pollution impacted negatively on the parameters studied, the addition of materials (Charcoal and Calcium chloride) to the crude oil polluted soil improved the growth of African yam bean. Calcium chloride pre- treatment inhibited the emergence of AYB in a polluted soil. There was a significant difference (P>0.05) in the plant height, leave area, number of leaves, carbohydrate content, stem girth and root length, while treatments had no significant difference in the chlorophyll content and number of roots. The combined treatment (CaCl2 + Charcoal + pollution) did not show any significant impact on the growth and biochemical parameters when compared to the single treatments therefore; Charcoal and Calcium chloride are very good biostimulants but are more effective when they are applied separately

    Influx of Calcium through L-type Calcium Channels in Early Postnatal Regulation of Chloride Transporters in the Rat Hippocampus

    Get PDF
    During the early postnatal period, GABAB receptor activation facilitates L-type calcium current in rat hippocampus. One developmental process that L-type current may regulate is the change in expression of the K+Cl− co-transporter (KCC2) and N+K+2Cl− co-transporter (NKCC1), which are involved in the maturation of the GABAergic system. The present study investigated the connection between L-type current, GABAB receptors, and expression of chloride transporters during development. The facilitation of L-type current by GABAB receptors is more prominent in the second week of development, with the highest percentage of cells exhibiting facilitation in cultures isolated from 7 day old rats (37.5%). The protein levels of KCC2 and NKCC1 were investigated to determine the developmental timecourse of expression as well as expression following treatment with an L-type channel antagonist and a GABAB receptor agonist. The time course of both chloride transporters in culture mimics that seen in hippocampal tissue isolated from various ages. KCC2 levels increased drastically in the first two postnatal weeks while NKCC1 remained relatively stable, suggesting that the ratio of the chloride transporters is important in mediating the developmental change in chloride reversal potential. Treatment of cultures with the L-type antagonist nimodipine did not affect protein levels of NKCC1, but significantly decreased the upregulation of KCC2 during the first postnatal week. In addition, calcium current facilitation occurs slightly before the large increase in KCC2 expression. These results suggest that the expression of KCC2 is regulated by calcium influx through L-type channels in the early postnatal period in hippocampal neurons

    Growing single crystals in silica gel

    Get PDF
    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals
    • …
    corecore